Vibrational effects on the electron momentum distributions of valence orbitals of formamide.

نویسندگان

  • Y R Miao
  • J K Deng
  • C G Ning
چکیده

The ionization energy spectra and electron momentum distributions of formamide were investigated using the high-resolution electron momentum spectrometer in combination with high level calculations. The observed ionization energy spectra and electron momentum distributions were interpreted using symmetry adapted cluster-configuration interaction theory, outer valence Green function, and DFT-B3LYP methods. The ordering of 10a(') and 2a(") orbitals of formamide was assigned unambiguously by comparing the experimental electron momentum distributions with the corresponding theoretical results, i.e., 10a(') has a lower binding energy. In addition, it was found that the low-frequency wagging vibration of the amino group at room temperature has noticeable effects on the electron momentum distributions. The equilibrium-nuclear-positions-approximation, which was widely used in electron momentum spectroscopy, is not accurate for formamide molecule. The calculations based on the thermal average can evidently improve the agreement with the experimental momentum distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation into the valence electronic structure of norbornene using electron momentum spectroscopy, Green's function, and density functional theories.

Results of a study of the valence electronic structure of norbornene (C(7)H(10)), up to binding energies of 30 eV, are reported. Experimental electron momentum spectroscopy (EMS) and theoretical Green's function and density functional theory approaches were utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distribu...

متن کامل

Spectral momentum densities of vanadium and vanadium oxide as measured by high energy (e, 2e) spectroscopy

Abstract The spectral momentum densities of vanadium metal and V2O3 are measured by electron momentum spectroscopy. Results are compared with band structure calculations based on density functional theory (DFT). Qualitatively, the agreement between theory and experiment is good. The calculated total band width of vanadium metal (6.5 eV) is in excellent agreement with the observed one (6.5 ± 0.2...

متن کامل

Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: theory, implementation, and examples.

Implementation of Dyson orbitals for coupled-cluster and equation-of-motion coupled-cluster wave functions with single and double substitutions is described and demonstrated by examples. Both ionizations from the ground and electronically excited states are considered. Dyson orbitals are necessary for calculating electronic factors of angular distributions of photoelectrons, Compton profiles, e...

متن کامل

Investigation of valence orbitals of propene by electron momentum spectroscopy.

The binding energy spectra and momentum distributions of all valence orbitals of propene were studied by electron momentum spectroscopy (EMS) as well as Hartree-Fock and density functional theoretical calculations. The experiment was carried out at impact energies of 1200 eV and 600 eV on the state-of-the-art EMS spectrometer developed at Tsinghua University recently. The experimental momentum ...

متن کامل

Probing the angular momentum character of the valence orbitals of free sodium nanoclusters.

Although many properties of polyatomic metal clusters have been rationalized by an electron shell model resembling that used for free atoms, it remained unclear how reliable this analogy is with respect to the angular momentum eigenstate character of the electronic wave functions. We studied free size-selected negatively charged clusters of sodium atoms (Nan-) of approximately spherical shape (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 12  شماره 

صفحات  -

تاریخ انتشار 2012